Blog

The Evolution of the Microwave: From Magnetrons to Solid-State Energy   Aug. 22, 2017

EvolutionBlogMicrowave.jpg (104438118)2017 marks the 50th anniversary of the invention of the microwave oven. Today an indispensable appliance in homes all around the world, the microwave has transformed the way we cook and prepare our food. Nevertheless technology is improving and advancing every day, and a new and improved microwave could be closer than you think.

The Beginning

The microwave was first invented in 1945, when a self-taught engineer by the name of Percy Spencer working for Raytheon discovered that the micro-waves emitting from an active radar set had melted a candy bar in his pocket. Spencer began experimenting and used the radar to pop popcorn and cook an egg, ultimately attaching a high density electromagnetic field generator to an enclosed metal box and testing different foods inside. Raytheon patented Spencer’s invention in 1945, and by 1947 had released the first microwave oven (then known as a Radarange) to the public. The device stood more than 5 feet off the ground, weighed 750 pounds, cost >$5,000 and used 3 kilowatts of power, almost three times as much as the typical household microwave uses today. It was twenty years before an affordable and economical microwave oven became available for sale.

Inside the Microwave Oven

This first microwave oven cooked food by transmitting the microwave radiation into the food to heat it. These microwaves were powered by magnetrons, high-powered vacuum tubes that create energy through interacting electrons in a magnetic field. As magnetrons penetrate an object, the electric dipole molecules rotate and bump into other molecules in an attempt to align themselves with the alternating electric field, thereby producing heat. The electric dipole molecules in salted liquids react the most, and are therefore heated the most, which is one of the main reasons why the typical magnetron-powered microwave may produce food with uneven hot and cold spots.

The Future of Cooking

Despite the significant evolution of the microwave over the last 50 years, the use of magnetrons in the microwave has remained fairly unchallenged. Recent technology advancements, made possible by efforts like the RF Energy Alliance (RFEA) and MACOM’s GaN-on-Silicon (GaN-on-Si), are today challenging the traditional microwave and enabling a modernized microwave powered by a solid-state RF energy source, capable of more precise and exact heating and cooking. RF energy uses precision controlled electromagnetic energy to heat items, boasting “an unprecedented control range, even energy distribution, and fast adaption to changing load conditions” (RF Energy Alliance) and can easily provide power for many different processes, perhaps most notably cooking and heating applications.

A solid-state RF transistor is capable of generating hyper-accurate, controllable and responsive energy fields, enabling a precise and ideal distribution of RF energy to ideally heat food to precise specifications. MACOM’s GaN-on-Si 300W transistor, for example, provides improved energy efficiency up to >80% in a typical cooking recipe in a small form factor at 2.45 GHz. While magnetron-powered microwaves have an average lifespan of 500 to 1,000 hours, with new solid-state RF energy transistors, we begin to see the potential for lifespans that surpass 10 years. Overcooking, and cold spots may soon be a thing of the past.

After 50 years of steady developments but essentially the same core microwave oven, the advancements of the RF Energy Alliance, together with MACOM’s GaN-on-Si technology performance, can revolutionize the microwave oven as we know it. MACOM is excited to be at the forefront of these technology breakthroughs, and make our mark on history by enabling an innovative and smarter kitchen for the world. 

The Microwave Oven and Solid-State RF Energy (Click to Enlarge - Infographic Courtesy of the RF Energy Alliance

MicrowaveOvenRFEA.png     


Read Full Post
Solving the Need for Speed in Cloud Data Centers with Etched Facet Technology   Aug. 08, 2017

EFT Blog Image 2.jpg

Solving the Need for Speed in Cloud Data Centers with Etched Facet Technology 

The demand by Cloud Data Centers for faster data delivery speeds at cost-effective prices is growing rapidly. Higher speeds are necessary for Cloud Data Centers to process the current explosion in traffic. Mobile and video use drove data center traffic to 4.7 zettabytes (ZB), or almost five trillion gigabytes (GB), in 2015, and Cloud traffic will hit 14.1 ZB in 2020. Cisco predicts that in 2020, 92 percent of Data Center bandwidth will be used by cloud data workloads rather than traditional workloads. As expected, the requirements Cloud Data Centers have for resiliency and data redundancy when processing cloud data traffic necessitate high data transfer speeds.

The Need for Speed - but who is behind the wheel?

This need for speed is driven primarily by the large public cloud providers, such as Microsoft, Google, Facebook and Amazon. Analysts predict that the market for Data Center solutions will increase from an $18.6 billion market in 2015 to a $32.3 billion market in 2020. Solutions that also reduce operational cost through increased efficiency will be the most in demand.

Due to this enormous growth in traffic, Cloud Data Center operators are working to increase data delivery speeds from 100G to 400G as quickly as possible. But, there are considerations that must be made by these operators when evaluating solutions that can increase speed. These solutions will only work if they also reduce space requirements, power consumption and operational costs.

Solutions?

So, if space, power consumption and operational costs are a factor, the components (Lasers, Drivers, Amplifiers, PHYs etc.) going into these Cloud Data Centers must optimize these traits. One solution to the need for speed is the use of Etched Facet Technology (EFT) over traditional Cleaved Facet Technology (CFT). By utilizing EFT over CFT, manufacturers can offer smaller, more efficient and less expensive optical transceiver modules for optical interconnects used for high-speed data transfer at Cloud Data Centers.

EFT versus CFT

MACOM EFT.jpg

Figure 1. Source: Etched Facet Technology: Lighting the Path to 400G and Beyond in the Cloud Data Center

Let’s look at some of the reasons why EFT offers an effective solution to the need for speed. Lasers formed with the traditional CFT process are created from mechanically separated (or cleaved) wafers, and then stacked to create mirrors. EFT creates mirrors on the surface of the wafer using high-precision chemical etching. Thus, there are many advantages to using EFT in manufacturing over CFT:

  • EFT is a more precise process than CFT, therefore reducing the risk of defects due to cleaving.
  • Testing when using CFT is expensive and can only be done at laser bar level. With EFT, testing can easily be done at a full wafer level, covering the whole range of temperatures.
  • EFT provides an accurate location of the facet relative to alignment marks, whereas CFT cannot control the exact location of the facet. Using EFT, MACOM developed the proprietary self-alignment (SAEFT™) technology to attach lasers to silicon chips rather than using the slow active alignment process — thereby enabling more cost effectiveness at mass production levels.
  • EFT allows high yield production of short cavity lasers, which is critical for high speed applications.
  • EFT allows placing two lasers with a predetermined cavity length difference to increase the single mode yield.
  • EFT can reduce laser beam divergence to increase fiber coupling efficiency.
  • EFT can produce very low reflectivity facet by etching the facet at an angle, which is crucial for Semiconductor Optical Amplifier (SOA) applications.
  • EFT can generate surface emission by etching the facet at an angle and custom angles, which is critical for Silicon Photonic (SiPh) chips with grating coupler.
  • Non-hermetic passivation coating can be more effectively applied to EFT lasers on wafer scale, as compared to CFT lasers, which are coated on bar level.

Implementing the Advantages of Etched Facet Technology (EFT)

The advantages of EFT allow facets to be defined through high precision photolithography, rather than imprecise cleaving. This results in an unprecedented uniformity and yield, as well as the capability to build structures that are impossible to realize with conventional techniques. With no dependency on the crystallographic plane of the wafer, unique anti-reflection geometries can be used in place of expensive coatings.

Due to the EFT process, MACOM is able to more fully evaluate all of our lasers on the wafer in an automated, high-throughput test operation, in addition to dramatically reducing the cost of chip-handling. This process has enabled the integration of silicon PICs with lasers, creating the very first L-PIC™, or lasers integrated with a photonic integrated circuit. MACOM’s L-PIC enables a lower cost, efficient and high-yield data transfer solution, increasing the feasibility of adopting PICs as high density optical interconnect solutions for Cloud Data Centers.

In cost-sensitive markets, solutions like MACOM’s EFT process enable high precision chemical etching, minimize the risk of laser defects, reduce the overall cost of manufacturing lasers and offer a cost-effective and scalable solution, thereby delivering the products and solutions that will meet this upward need for speed. 


Read Full Post
Top 10 Trends You Need to Know About for Keeping Up with the Cloud Data Center Market   Jul. 25, 2017

DCTrends.jpg (802301300)Technology quite literally moves at the speed of light. To keep up with the Cloud Data Center market, it’s vital to stay on top of changes. Here are the top 10 trends you need to know about.

1. On-Demand Access

Cloud Data Centers primarily store information and provide disaster recovery capabilities. However, as new technologies grow—such as mobile applications and the Internet of Things (IoT)—the need for on-demand access is also growing. Users expect to have the same experience with data whether they are accessing it from a local device storage or from the cloud. Cloud Data Centers need to provide faster data processing and continue to shift focus to cloud computing and reducing latency.

2. Hiring Demand

Data scientists use analytics to turn big data into valuable and actionable insights. As Cloud Data Centers make the shift from information storage facilities to on-demand cloud data processing centers, the need for data engineers is rising. Data engineers optimize the performance of their company’s big data ecosystem. Rather than hiring just data scientists, Cloud Data Centers may need to consider hiring teams of data scientists and data engineers to create and deploy models and algorithms.

3. Infrastructure Flexibility

As many companies chase the latest technology-enabled innovation, the demand for flexible IT infrastructure grows. Many organizations are moving their data from on-premise servers to service provider Cloud Data Centers. This increases infrastructure flexibility, as businesses can choose between dedicated or shared servers, public or private clouds and hybrid services for the best fit to their rapidly shifting needs.

4. Shift from Numbers to Capacity

Despite recent explosive growth, some analysts believe that the number of Cloud Data Centers will peak in 2017. However, even as physical space demand reaches its limits, data capacity at service provider centers continues to grow and is driving datacenter interconnects to faster speeds and higher bandwidth port densities. Service providers are running mega Cloud Data Centers as they shift to cloud offerings. Cisco predicts that by 2020, 92 percent of all workloads will be in the cloud.

5. Increased Investor Interest

Cloud Data Center growth is attracting investor interest. Although some Cloud Data Center investment opportunities are less attractive due to rising energy costs and sovereignty laws, some reports indicate that Data Center Real Estate Investment Trusts (REITs) are delivering 10 percent to 15 percent returns. Other types of investment funds are yielding single digit returns in the current monetary climate, making Data Centers an attractive investment opportunity.

6. Geographic Cloud Growth

In certain markets, such as Silicon Valley, Northern Virginia (NoVa), London and Tokyo, the shift to the cloud is happening even faster than in other parts of the world. Several major providers anticipate they will need to triple infrastructure by 2020.

7. Faster Speeds Without Higher Costs

The surge in data comes from the growth of video streaming, the IoT and mobile applications. Bandwidth demands that accompany this surge are leading Data Center operators to seek faster speeds without increasing costs. 25 Gigabit Ethernet (25GbE) offers a balanced tradeoff between performance and cost as Cloud Data Centers transition to higher speeds. 

8. Bundling and Flexibility

Another way to increase data transfer and processing speeds is to bundle links. Cloud Data Centers can achieve 100G speeds by aggregating four 25GbE links. Conversely, they can increase data handling flexibility by unbundling 100GbE links into four 25GbE links.  And, the industry is already developing 400GbE links that bundle four 56GbE links using higher-order PAM4 modulation schemes.

9. High-Density Switches

Advances in semiconductor design and configuration allow Cloud Data Center operators to reduce costs through increased power efficiency. For example, a 48-port switch can now be configured on a single chip instead of the two chips previously required. Optimized solutions such as MACOM’s L-PIC™ allow Cloud Data Center operators to increase capacity cost-effectively and efficiently. By using MACOM’s proprietary self-alignment (SAEFT™) technology, MACOM’s L-PIC enables lower cost, efficient and scalable module solutions and increases the adoption of PICs as high density optical interconnect solutions for Cloud Data Centers.

10. IT Outsourcing

One way organizations can free up space on their networks while maintaining (or increasing) bandwidth speeds is to outsource their IT to the cloud. Rather than maintaining their own complete IT infrastructure, companies can turn to cloud service providers for increased speed and flexibility at a lower operating cost.

The Cloud Data Center market is evolving rapidly. Although some opportunities are shrinking as data moves to the cloud, savvy investors can realize gains. Stay on top of these 10 trends to make your investments count.  


Disclaimer

All financial guidance projections referenced in this post were made as of the publication date or another historical date noted herein, and any references to such projections herein are not intended to reaffirm them as of any later date. MACOM undertakes no obligation to update any forward-looking statement or projection at any future date. This post may include information and projections derived from third-party sources concerning addressable market size and growth rates and similar general economic or industry data. MACOM has not independently verified any information and projections from third party sources incorporated herein. This post may also contain market statistics and industry data that are subject to uncertainty and are not necessarily reflective of market conditions. Although MACOM believes that these statistics and data are reasonable, they have been derived from third party sources and have not been independently verified by MACOM.


Read Full Post
Phased Array Antennas & The Roadmap to 5G Wireless   Jul. 11, 2017

As the market and media hype around 5G continues to grow, there is a tacit acknowledgement that we have miles to go before 5G becomes a reality. Initial industry standards for 5G aren’t expected to be ratified until Summer 2018 at the earliest, and there are many regulatory issues and a myriad of technology challenges still to be resolved before 5G is ready for mainstream commercialization.

Yet, despite these daunting challenges, the promised benefits of 5G are so profound that one can’t help but get excited about it. Improved mobile phone connectivity is just the tip of the iceberg when one considers 5G’s implications for transportation, industrial and entertainment applications, among many others. In a recent whitepaper from industry research firm IHS Markit, 5G is heralded as the catalyst that will vault mobile technology into the realm of general-purpose technologies (GPTs) that drastically alter society, à la the printing press, the steam engine and electricity.

Markets Apps 5G.png

An overview of the markets and applications impacted by 5G (image above courtesy of Nokia)

MIMO vs Massive MIMO

Achieving the promise of 5G will require, among other things, major innovations in the way basestations are architected. Today we rely on multiple input, multiple output – or MIMO – antennae configurations to multiply the capacity of antennae links for wireless basestations. These antennas provide the ability to concentrate signal strength into smaller areas of space, boosting overall efficiency and throughput by guiding the signal to the precise location it’s needed. By adding additional antennas, this beamforming capability is improved.

But whereas conventional basestations may house between two and eight antennas, 5G basestations will need anywhere from 64 to hundreds of antennas arrayed in a “massive MIMO” configuration to provide the requisite data rates. This phased array antennae design comprises an active electronically scanned array (AESA), which enables signals to be electronically steered with much greater beamforming precision than MIMO can support today.

High-Performance, Low Cost Active Antennas

When it comes to the architecture and assembly of massive MIMO 5G systems, we see many parallels with the new generation of Multifunction Phased Array Radar (MPAR) active antennae systems targeted for use for military and civil air traffic control, and weather system tracking applications. And while you might not typically associate this class of radar system with cost-sensitive commercial applications like 5G, you might be surprised to learn that MPAR technology leverages design and manufacturing efficiencies that dramatically reduce the cost of the end system.

First generation MPAR systems feature an array of Scalable Planar Array (SPAR™) Tiles in a flat panel configuration comprised of hundreds to thousands of active antennas. SPAR Tile technology, developed in a collaboration between MACOM and MIT Lincoln Laboratory, embodies a new cost-conscious approach to phased array radar system development, leveraging highly-integrated antenna sub-systems, and volume scale commercial packaging and manufacturing techniques.

 

MACOM MPAR.jpg

First generation MPAR systems leverage an array of Scalable Planar Array (SPAR) Tiles – shown above

Tile-based AESAs create the foundation for a new generation of high-performance, agile radar systems that can be built quickly and flexibly tailored and scaled for deployment across a range of applications – at 5X less cost than conventional slat array architectures. Continued innovations in phased-array-based technologies like MPAR will help to unlock the full promise of 5G, allowing basestation OEMs to simplify design and manufacturing processes, and get to market faster with 5G technology.

To learn more about the benefits of MPAR technology for 5G, check out this article in Microwave Product Digest. For a deep-dive read on the MPAR technology architecture, head over to Microwave Journal


Read Full Post

All Blog Posts