

Preliminary - Rev. V2P

Features

Ka-band Power Amplifier

Gain: 25 dB

Output Power: 11.5 WSupply Voltage: 22 V

PAE: 27%Bare Die

Die Size: 3.575 x 3.075 x 0.1 mm

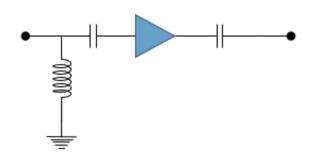
Applications

VSAT

1

• Ka-band Satellite Communications

Description


The MAPC-MP0003-DIE is a 11.5 W, Ka-band power amplifier. This GaN on SiC power amplifier operates at 22 V and has a typical power added efficiency of 27%. Typical applications include Ka-band satellite communications.

Each device is 100% RF tested to ensure performance compliance.

Ordering Information

Part Number	Package
MAPC-MP0003-DIEPPR	Bulk
MAPC-MP0003-SB1PPR	Sample Board

Functional Schematic

Pin Configuration¹

Pin #	Label
1	RF _{IN}
2, 7, 11, 12, 14, 15, 19, 24, 25	GND
3, 23	VG1, VG2
4, 22	VG3
5, 21	VG4
6, 20	VD1
8, 18	VD2
9, 17	VD3
10, 16	VD4
13	RF _{OUT}

The backside of the die must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Pin Description

Pin #	Name	Description
1	RF _{IN}	RF Input has DC ground for ESD robustness
2, 7, 11, 12, 14, 15, 19, 24, 25	GND	RF and DC Ground
3, 23	VG1, VG2	Gate voltage, stages 1 and 2
4, 22	VG3	Gate voltage, stage 3
5, 21	VG4	Gate voltage, stage 4
6, 20	VD1	Drain voltage, stage 1
8, 18	VD2	Drain voltage, stage 2
9, 17	VD3	Drain voltage, stage 3
10, 16	VD4	Drain voltage, stage 4
13	RF _{OUT}	RF Output is DC de-coupled

Preliminary - Rev. V2P

Electrical Specifications:

Freq. = 27 - 31 GHz, T_C = 25°C, V_D = +22 V, I_{DQ} = 300 mA, CW Operation, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	Small Signal, P_{IN} = -10 dBm Large Signal, P_{IN} = +21 dBm	dB		25.0 19.6	_
Gain Flatness (Peak-to-Peak)	P _{IN} = -10 dBm	dB	_	2	
IM3	P _{OUT} = 33 dBm per tone, spacing 100 kHz to 1 GHz	dBc	_	25	_
Output Power	P _{IN} = +21 dBm	dBm		40.6	
Output Power Flatness	P _{IN} = +21 dBm	dB		1	
Input Return Loss	P _{IN} = -10 dBm	dB	_	12	_
Output Return Loss	P _{IN} = -10 dBm	dB	_	10	_
Power Added Efficiency P _{IN} = +21 dBm		%	_	27	_

Recommended Operating Conditions

Parameter	Symbol	Unit	Min.	Тур.	Max.
RF Input Power	RF _{IN}	dBm	_	21	25
Drain Supply Voltage	VD	V	_	22	25
Gate Supply Voltage	VG	V	-5	-3.9	_
CW Duty Cycle		%	10	_	100
Junction Temperature ^{4,5}	TJ	°C	_	+200	_
Operating Temperature ⁶	T _C	°C	-40	_	+85
Storage Temperature	Ts	°C	-55	_	150

Absolute Maximum Ratings^{5,6}

Parameter	Symbol	Unit	Min	Max
RF Input Power	RF _{IN}	dBm	_	28
Drain Supply Voltage	VD	V		28
Gate Supply Voltage	VG	V	-6	_
Junction Temperature	TJ	°C	_	+225
Storage Temperature	Ts	°C	-55	+150

- 2. Exceeding any one or combination of these limits may cause permanent damage to this device.
- 3. MACOM does not recommend sustained operation near these survivability limits.
- 4. Operating at nominal conditions with $T_J \le +200$ °C will ensure MTTF > 1 x 10⁶ hours.
- 5. Junction Temperature $(T_J) = T_C + \Theta jc * (V * I-(P_{OUT}-P_{IN}))$

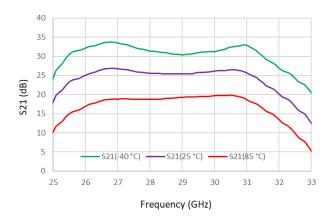
Typical thermal resistance (Θ jc) = 3.2 °C/W.

a) For T_C = +25°C, Pout = 40.6 dBm, Pin = 21 dBm:

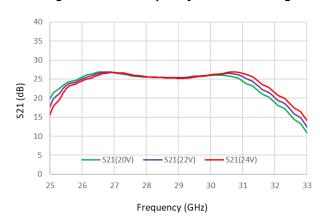
T_{.J} = 129 °C @ 22 V, 2.0 A

b) For T_C = +85°C, Pout = 39.5 dBm, Pin = 21 dBm:

T_J = 184 °C @ 22 V, 1.7 A

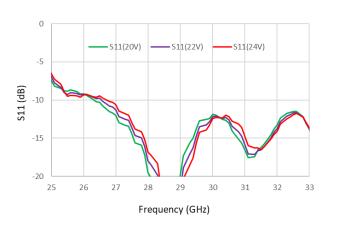

6. T_C is defined as backside of die

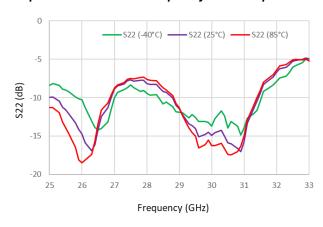
PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

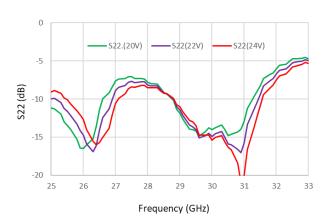


Typical Performance Curves: V_D = 22 V, I_{DSQ} = 300 mA, V_G = -3.9 V typical

Small Signal Gain vs. Frequency over Temperature

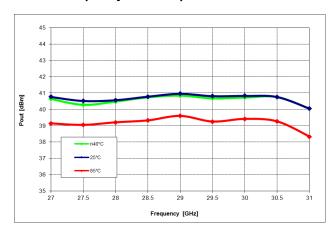

Small Signal Gain vs. Frequency over Bias Voltage


Input Return Loss vs. Frequency over Temperature


Input Return Loss vs. Frequency over Bias Voltage

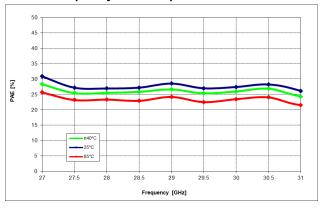
Output Return Loss vs. Frequency over Temperature

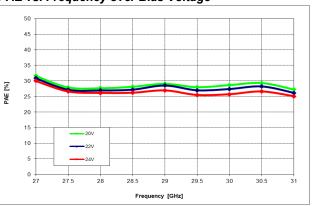
Output Return Loss vs. Frequency over Bias Voltage


PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

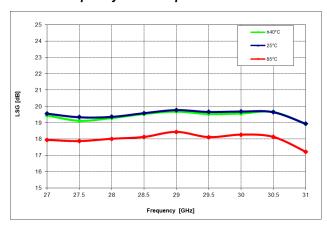


Typical Performance Curves: $V_D = 22 \text{ V}$, $I_{DSQ} = 300 \text{ mA}$, $V_G = -3.9 \text{ V}$ typical, Pin = 21 dBm

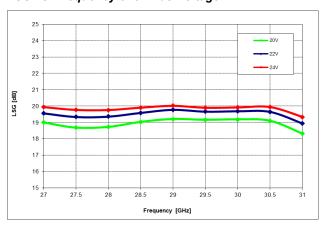

Pout vs. Frequency over Temperature


Pout vs. Frequency over Bias Voltage

PAE vs. Frequency over Temperature



PAE vs. Frequency over Bias Voltage

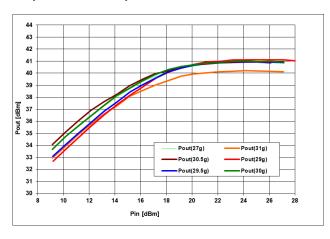


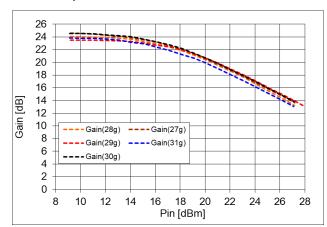
LSG vs. Frequency over Temperature

5

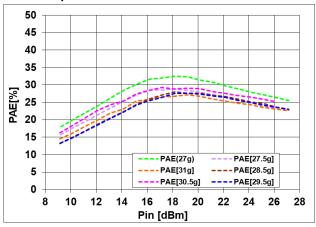
LSG vs. Frequency over Bias Voltage

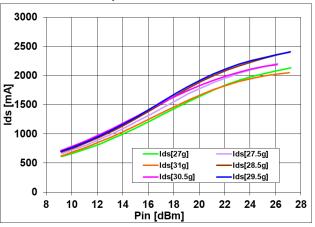
PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

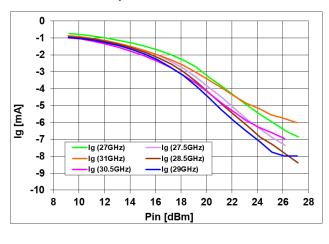

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

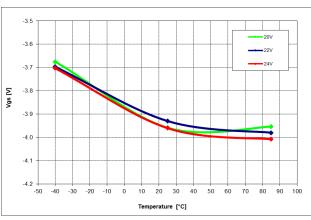

Preliminary - Rev. V2P

Typical Performance Curves: $V_D = 22 \text{ V}$, $I_{DSQ} = 300 \text{ mA}$, $V_G = -3.9 \text{ V}$ typical, 25°C


Output Power vs. Input Power at 25°C


Gain vs. Input Power at 25°C

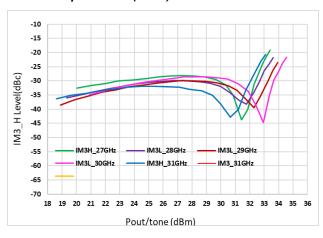

PAE vs. Input Power at 25°C

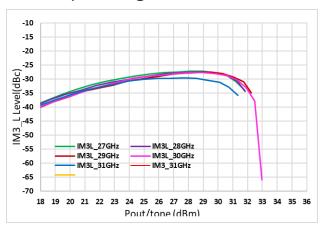

Drain Current vs. Input Power at 25°C

Gate Current vs. Input Power at 25°C

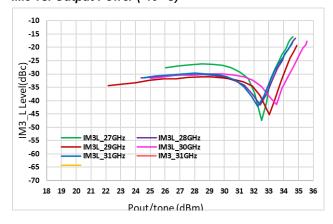
Gate Voltage vs. Temperature for constant Idsq

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

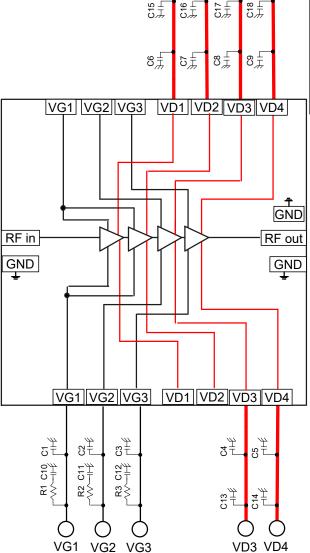

Preliminary - Rev. V2P

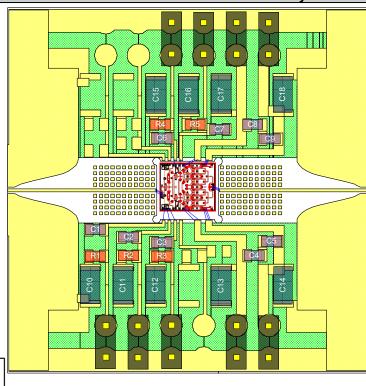
Typical Performance Curves: $V_D = 22 \text{ V}$, $I_{DSQ} = 300 \text{ mA}$, $V_G = -3.9 \text{ V}$ typical


IM3 vs. Output Power (25 °C)

IM3 vs. Output Power @ 85°C

IM3 vs. Output Power (-40 °C)




Preliminary - Rev. V2P

Sample Board Layout

Application Schematic

VD1 VD2 VD3 VD4

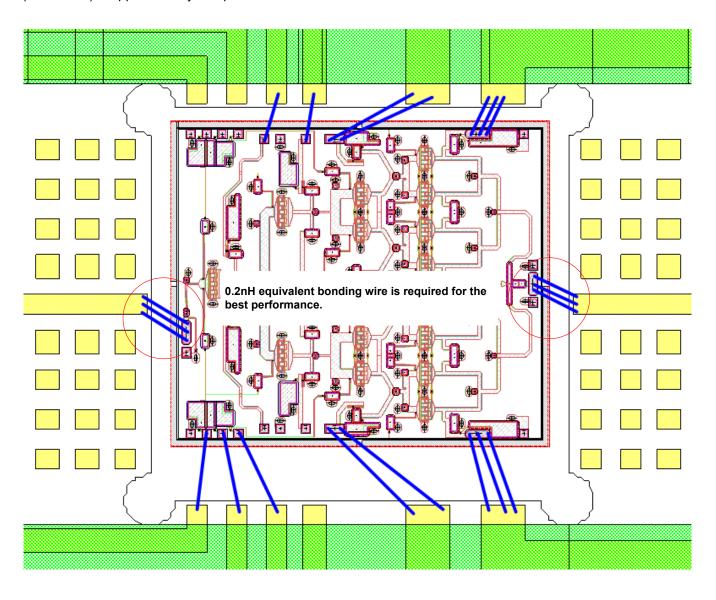
Parts List

Part	Value	Case Style
C1 – C9	0.01 μF, 50 V	1206
C10- C18	10 μF, 50 V	0603
R1 – R3	10 Ω	0402

Sample Board Material Specifications

Top Layer: 1/2 oz Copper Cladding, 0.017 mm thickness Dielectric Layer: Rogers RO4350B 0.101 mm thickness Bottom Layer: 1/2 oz Copper Cladding, 0.017 mm thickness Finished overall thickness: 0.135 mm

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

8

Recommended Bonding Diagram and PCB Layout Detail:

Optimum bonding wire inductance for the RF I/O connection is 0.2 nH, and physical length for the gold bond wire (0.001" dia.) is approximately 350 µm each for the three wire connection.

Preliminary - Rev. V2P

Application Notes

MAPC-MP0003-DIE is designed to be easy to use yet high performance. The ultra small size and simple bias allows easy placement on system board. RF output ports are DC de-coupled internally. RF input port has DC connection to the ground for the ESD protection purpose.

Die Attachment

This product is manufactured from 0.1 mm (0.004") thick SiC substrate and has vias through to the backside to enable grounding to the circuit.

Recommended conductive epoxy is Namics Unimec XH9890-6. Epoxy should be applied and cured in accordance with the manufacturer's specifications and should avoid contact with the top of the die.

Supply Sequencing Turn-on

- 1. Apply V_G (-5 V).
- 2. Apply V_D (22 V typical).
- 3. Set I_{DQ} by adjusting V_G more positive (typically V_{G^*} -3.9 V for I_{DQ} = 300 mA).
- 4. Apply RF_{IN} signal.

Turn-off

- 1. Remove RF_{IN} signal.
- 2. Decrease V_G to -5 V.
- 3. Decrease V_D to 0 V.

Biasing Conditions

Recommended biasing conditions are: $V_D = 22 \text{ V}$, $I_{DQ} = 300 \text{ mA}$ (controlled with V_G).

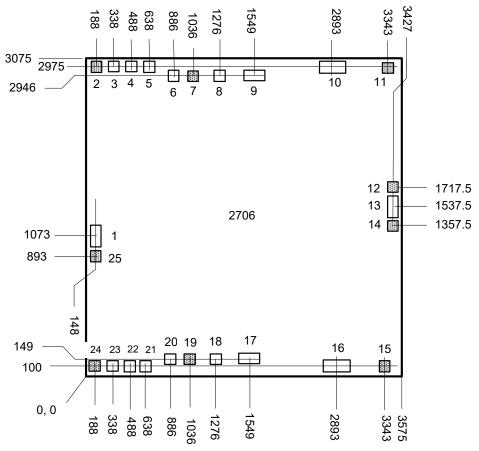
 V_{D} bias must be applied to $V_{\text{D}}1,\ V_{\text{D}}2,\ V_{\text{D}}3,$ and $V_{\text{D}}4$ pads.

Both V_D3 pads (9, 17) are required for current symmetry.

Both V_D4 pads (10, 16) are required for current symmetry.

A single DC voltage (V_G) will bias all amplifier stages. Muting can be accomplished by setting the V_G to the pinched off voltage (V_G = -5 V).

Handling Procedures


Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.

Die Dimensions

Die thickness is 100 +/- 10 μm .

Revision history

Rev	Date	Change description
V1P	1/30/23	Preliminary data sheet release
V2P	6/6/23	Update outline, pinout, and sample board to reflect three gate pins.

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.